
USE OF T H E  S C H L I E t l E N  M E T H O D  TO I N V E S T I G A T E  

T E M P E R A T U R E  F I E L D S  IN A S O L I D  

Yu .  A. N a p a r ' i n  a n d  V. I .  S h a k h u r d i n  UDC 536.2.08 

The use of the Schlieren method to measure  the temperature  field and temperature gradients 
in a solid is considered.  The resul ts  obtained are  compared with a theoretical  calculation of 
the temperature  field in a finite cylinder for boundary conditions of the second and third kind. 

Shadow methods are widely used to investigate inhomogeneities in gases  and liquids [1]. These meth-  
ods can also be used to investigate inhomogeneities in solids. 

In this paper we consider  the problems involved in making a quantitative investigation of optical in- 
homogeneities caused by the temperature  field in a solid in the form of a cylinder. One of the important 
advantages of the T~pler method or  the Schlieren method is the fact that it enables one to observe visually 
the dynamics of the development of the temperature  field both of s tat ionary and moving heat sources,  and 
when suitably calibrated,  quantitative calculations can also be car r ied  out. Using photography, one can 
record  the state of the temperature  field at any instant of time. The method is based on the change in the 
angle of deviation of a beam of light by optical inhomogeneities in a solid, due to inhomogeneity of the tem-  
perature  field. 

The apparatus was assembled using the parallel  beam ar rangement  and a Ronk grat ing on an OSK-3 
optical bench. It enabled us to measure  the angle of deviation of the light beam with an accuracy  up to 2 
�9 10 -4 radian. 

The sensit ivity of the apparatus can be improved considerably if one uses a Foucault  knife edge as the 
visualizing diaphragm. To make quantitative measurements  it is neces sa ry  to establish in advance the r e -  
lation between the angle of deviation of the light beam and the tempera ture  gradient, i . e . ,  to cal ibrate  the 
apparatus. 

Fig. 1. Calibration of the Schlieren (a) and a Schlieren photograph 
of the distribution of the horizontal  isogradients in a finite cylinder,  
uniformly heated over the whole side surface (b). 
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Fig. 2. Graph of the va -  
r iat ion of 0(~)/K. 
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Fig. 3. Graph of the va -  
r ia t ion of 0(O)/K: 1) for  
the cen te r  of the finite 
cyl inder  ~ = 0; 2) for  the 
end ~ = 1.645; 3) r e su l t s  
obtained by the 8chlteren 
method. 

Cal ibrat ion is c a r r i ed  out as follows [2]. Over the end of the cyl inder  
c h r o m e l - k o p e l  thermocoupies  a re  attached along the radius .  Using an 1~PP- 
09 e lec t ronic  po ten t iomete r  we measu red  the t e m p e r a t u r e  and s imul taneous-  
ly photographed the distr ibution pa t te rn  of the bands of t e m p e r a t u r e  i so-  
grad ien ts  (Fig. la) .  The coordinates  of the points at which the t h e r m o -  
couples are  at tached were  found using a KM-6 ca the tomete r .  F r o m  the r e -  
suits  obtained we cons t ruc ted  a graph of the t e m p e r a t u r e  distr ibution T 
= T(r),  f r o m  which we found the value of each i sogradient  aT/Or. The iso-  
g rad ien t s  we re  calculated up to the hea te r .  As the ze ro  band we took that 
pa r t  of the spec imen in which there  were  no Schlieren within the l imi ts  of 
the reso lv ing  power of the method. We will c o m p a r e  the exper imenta l  data  
obtained by cal ibra t ion with theore t ica l  calculat ions.  To do this we will con-  
s ide r  the t e m p e r a t u r e  field in a finite c i r cu l a r  cyl inder  of radius  R and length 
2/0, uni formly  heated along the side sur face  by a heat  flux q = q(t). Heat 
t r a n s f e r  takes place through the end of the cyl inder  f r o m  a medium at a 
t e m p e r a t u r e  T 0. The initial t e m p e r a t u r e  of the cyl inder  is T 0. We will find 
the t e m p e r a t u r e  distr ibution for  t > 0. T h e  p rob lem can be reduced to the 
solution of the heat  conduction equation (in d imens ion less  quantities) 

0 Fo == ~ " do- P 4 ~ P (Vo) (1) ' O~ 

with the initial arid boundary conditions 

0(9, ~, 0 ) = 0 ,  
(2) ~ p _ q  - -  O ,  

- - - i  - B i 0 l r  

Jo=-z ( 3 )  

F 
0~ ]~=t - Bi %=-z. 

The function P(Fo) r e p r e s e n t s  the the rma l  source ,  and can be r ep re sen ted  
in the f o r m  

P ( F o ) -  2K(Fo) 7---97 6 ( 1-- p~) 5 (~ ~ [), (4) 

where  1 - P i  = 8; 8 iS an a r b i t r a r y  smal l  posi t ive quantity, 

5 ( 1 - - 9 1 ) :  {0 9<91, 
1 91-<.9~ 1, 

5 ( ~ + _ 0 = { 0  [~[>t, 
1 i~t < l .  

Omitting the calcula t ions  here ,  we will wr i te  the final solution obtained using Fou r i e r  and Hankel t r a n s f o r -  
mat ions  

F o  

o- -  E Bhc~ E 2J~ (s) ~,j exp [--(s2+k2)(Fo--~)] K(T)d~, 

k s 0 

where summation with respect to k is carried out over all the roots of the equation 

k sin kl -- Bi cos kl = O, 

while summation with respect to s is carried out for all roots of the equation 

g (s) = 0. 

In the ease  of a constant  the rma l  flux K(Fo) = K = const,  Eq. (5) takes the f o r m  

K E  Z J~ 1--exp [-- (s2+k2) F~ } 0 : 2  B hcosk~ d0(s)(s ~ + k  2) { 
k s 

(5) 

(6) 

(7) 
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Using Eq. (7) we calculated the Schlieren (Fig. lb) for Fo = 0.3, Bi = 0.42 [3], and q/~ = OT/3r, equal to 
1.41 �9 104 degree/m. The change in temperature  along the axis of the cylinder f rom the center  to the end 
for different values of p (0 ~ p - 1) is shown in Fig. 2. The change in temperature  f rom the axis to the 
per iphery  at the center  of the cylinder and at its end is shown in Fig. 3. Curve 1 shows the temperature  
distribution in the center  of the cyl inder  } = 0. Curve 1 agrees  with the s imi lar  calculation for an infinite 
cyl inder  [4], within the limits of caleulational e r ro r .  Curve 2 shows the temperature  distribution at the 
ends of the cyl inder  (} = +1.645). The dashed curves  show values of the temperature  found by the Schlieren 
method with subsequent graphical  integration. Good agreement  is observed between the curves  in the range 
p = 0.60-0.85, and a small d isagreement  between the theoretical  and experimental  points close to the axis 
and the surface of the cylinder.  This may be due to the fact that the theoretical  calculation involves the 
Biot cr i ter ion,  the value of which is taken for the average integral temperature  over the end of the cylinder.  
Analysis of the relative e r r o r  in the isogradients 0T/Or shows that the grea tes t  relative e r r o r  does not ex- 
ceed 5%. At the point of intersection of the curves  (Fig. 3) the spread between the theoretical  and exper i -  
mental values of the temperature  is 2.35%. 

In conclusion we note that the above method can be used to determine the thermal  charac te r i s t i c s  of 
a solid and their  temperature  dependence. 

With the appropriate calibration, we can easily determine 

q OT , 

whence, f rom the known value of the thermal  flux q, we can find the thermal conductivity k for the given 
temperature .  F r o m  the well-known dependence of the ref rac t ive  index on the temperature  and on the me-  
chanical s t r e s ses  we can also make quantitative investigations of the field of the temperature  s t resses .  

2/0 
n 
T and T O 
0 = ( T - T 0 ) / T  0 
R 
p = r/R 

a and k 
t 
Fo = a t / R  ~ 

-- ~ / R  
z = t o / R  
q(Fo) 
K(Fo) = (R/XT0)q(Fo) 
P(Fo) = [2K(Fo)/(1-  p~)]5(1-p05(  ~ + l) 
Bi = aR/k  

Z0(s) 

N O T A T I O N  

is the length of the cylinder; 
is the refract ive index; 
are  the absolute tempera ture  of the cyl inder  and the medium; 
is the dimensionless temperature;  
is the radius of the cylinder; 
is the dimensionless  radius; 
are  the thermal diffusivity and the thermal  conductivity; 
is the time; 
is the Four ie r  number; 
is a dimensionless  coordinate; 
is the dimensionless  half-length; 
is the thermal  flux density; 
is a dimensionless complex; 
is a dimensionless complex; 
is the Biot number; 
is the Bessel  function of the f i rs t  kind and zeroth order .  
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