USE OF THE SCHLIEREN METHOD TO INVESTIGATE
TEMPERATURE FIELDS IN A SOLID
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The use of the Schlieren method to measure the temperature field and temperature gradients
in a solid is considered. The results obtained are compared with a theoretical calculation of
the temperature field in a finite cylinder for boundary conditions of the second and third kind,

Shadow methods are widely used to investigate inhomogeneities in gases and liquids [1]. These meth-
ods can also be used to investigate inhomogeneities in solids.

In this paper we consider the problems involved in making a quantitative investigation of optical in-
homogeneities caused by the temperature field in a solid in the form of a cylinder. One of the important
advantages of the Topler method or the Schlieren method is the fact that it enables one to observe visually
the dynamics of the development of the temperature field both of stationary and moving heat sources, and
when suitably calibrated, quantitative calculations can also be carried out. Using photography, one can
record the state of the temperature field at any instant of time. The method is based on the change in the
angle of deviation of a beam of light by optical inhomogeneities in a solid, due to inhomogeneity of the tem-
perature field,

The apparatus was assembled using the parallel beam arrangement and a Ronk grating on an OSK-3
optical bench., It enabled us to measure the angle of deviation of the light beam with an accuracy up to 2
1074 radian.

The sensitivity of the apparatus can be improved considerably if one uses a Foucault knife edge as the
visualizing diaphragm, To make quantitative measurements it is necessary to establish in advance the re-
lation between the angle of deviation of the light beam and the temperature gradient, i.e., to calibrate the
apparatus.

Fig. 1. Calibration of the Schlieren (a) and a Schlieren photograph
of the distribution of the horizontal isogradients in a finite cylinder,
uniformly heated over the whole side surface ().
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Calibration is carried out as follows [2]. Over the end of the cylinder

8
K| p=1 chromel-kopel thermocouples are attached along the radius., Using an EPP-
09 electronic potentiometer we measured the temperature and simultaneous-
i ly photographed the distribution pattern of the bands of temperature iso-

gradients (Fig. 1a). The coordinates of the points at which the thermo-
couples are attached were found using a KM-6 cathetometer. From the re-
° sults obtained we constructed a graph of the temperature distribution T

= T(r), from which we found the value of each isogradient §T/6r. The iso~
gradients were calculated up to the heater. As the zero band we took that
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5
i £ part of the specimen in which there were no Schlieren within the limits of
02 s the resolving power of the method. We will compare the experimental data
obtained by calibration with theoretical calculations, To do this we will con-

5 ’ 3 sider the temperature field in a finite circular cylinder of radius R and length
e a8 # & 21,, uniformly heated along the side surface by a heat flux g = q(t). Heat
Fig. 2. Graph of the va- transfer takes place through the end of the cylinder from a medium at a
riation of 6(¢)/K. temperature T;. The initial temperature of the cylinder is T,. We will find

the temperature distribution for t > 0. The problem can be reduced to the
solution of the heat conduction equation (in dimensionless quantities)
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The function P(Fo) represents the thermal source, and can be represented

F .
.Lg. 3. (}raph Of tl n he form

riation of 6()/K: 1) for P(Fo) = =22 8(1—p,) 8(E £ 1), (4)
the center of the finite =0
cylinder ¢ = 0; 2) for the

here 1 —p; = &; & it 11 iti i
end £ = 1.645; 3) results w P1 is an arbitrary small positive quantity,

obtained by the Schlieren §(1—p) — { 0 p<py,
method, I oo <o,
1 <L

Omitting the calculations here, we will write the final solution obtained using Fourier and Hankel transfor-
mations

Fo
0= E B, cos kg E 25"—2;)) exp [—(s*+#)(Fo—1)] K (v) dr, (5)
k s 0 0

where summation with respect to k is carried out over all the roots of the equation
ksin kl — Bicos kl = 0, (6)
while summation with respect to s is carried out for all roots of the equation
Jy(s) = 0.

In the case of a constant thermal flux K(Fo) = K = const, Eq. (5) takes the form
ES E: w) 2.1
0 = 2K B, cos kE OIS (1—exp [— (s>+-4%) Fo]} . (7)
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Using Eq, (7) we calculated the Schlieren (Fig. 1b) for Fo = 0.3, Bi = 0.42 [3], and q/A = 8T/dr, equal to
1.41-10% degree/m. The change in temperature along the axis of the cylinder from the center to the end

for different values of p (0 = p = 1) is shown in Fig. 2. The change in temperature from the axis to the
periphery at the center of the cylinder and at its end is shown in Fig, 3. Curve 1 shows the temperature
distribution in the center of the cylinder ¢ = 0. Curve 1 agrees with the similar calculation for an infinite
cylinder (4], within the limits of calculational error. Curve 2 shows the temperature distribution at the
ends of the cylinder (£ = £1.645). The dashed curves show values of the temperature found by the Schlieren
method with subsequent graphical integration. Good agreement is observed between the curves in the range
p = 0.60-0.85, and a small disagreement between the theoretical and experimental points close to the axis
and the surface of the cylinder, This may be due to the fact that the theoretical calculation involves the
Biot criterion, the value of which is taken for the average integral temperature over the end of the cylinder,
Analysis of the relative error in the isogradients 8T/dr shows that the greatest relative error does not ex-
ceed 5%. At the point of intersection of the curves (Fig. 3) the spread between the theoretical and experi-
mental values of the temperature is 2.35%.

In conclusion we note that the above method can be used to determine the thermal characteristics of
a solid and their temperature dependence,

With the appropriate calibration, we can easily determine
g _9T
A or r=R,

whence, from the known value of the thermal flux q, we can find the thermal conductivity A for the given
temperature. From the well-known dependence of the refractive index on the temperature and on the me-
chanical stresses we can also make quantitative investigations of the field of the temperature stresses.

NOTATION
21, is the length of the cylinder;
n is the refractive index;
T and T are the absolute temperature of the cylinder and the medium;
0= (T-Ty/T, is the dimensionless temperature;
R is the radius of the cylinder;
p=r1r/R is the dimensionless radius;
a and A ' are the thermal diffusivity and the thermal conductivity;
t is the time;
Fo = at/R? " is the Fourier number;
¢ =z/R is a dimensionless coordinate;
1=1/R is the dimensionless half-length;
q(Fo) is the thermal flux density;
K(Fo) = ®/ATyq(Fo) is a dimensionless complex;
P(Fo) = [2K(Fo)/(1—pH16(1—p)6(t £1) is a dimensionless complex;
Bi = aR/A is the Biot number;
Jy(s) is the Bessel function of the first kind and zeroth order.
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